

DETERMINANTS

PART 1

TESSY ROY VARGHESE INDIAN SCHOOL MUSCAT

TOPICS

- DEFINITION AND EVALUATION OF DETERMINANTS (ROW WISE &COLUMN WISE)
- PROPERTIES OF DETERMINANTS
- AREA OF TRIANGLE
- MINORS AND CO-FACTORS OF DETERMINANTS
- ADJOINT AND INVERSE OF A MATRIX
- APPLICATION OF MATRICES AND DETERMINANTS

INTRODUCTION

can be

In the previous chapter, we have studied about matrices and algebra of matrices. We have also learnt that a system of algebraic equations can be expressed in the form of matrices. This means, a system of linear equations like

$$a_{1} x + b_{1} y = c_{1}$$

$$a_{2} x + b_{2} y = c_{2}$$
represented as
$$\begin{bmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix}.$$

DEFINITION

To every square matrix $A = [a_{ij}]$ of order *n*, we can associate a number (real or complex) called determinant of the square matrix A, where $a_{ij} = (i, j)^{\text{th}}$ element of A.

A DETERMINANT IS A FUNCTION FROM A SET OF SQUARE MATRICES TO A SET OF REAL OR COMPLEX NUMBERS

If M is the set of square matrices, K is the set o numbers (real or complex) and $f: M \to K$ is defined by f(A) = k, where $A \in M$ and $k \in K$, then f(A) is called the determinant of A. It is also denoted by |A| or det A or Δ

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then determinant of A is written as $|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \det(A)$

Remarks

(i) For matrix A, |A| is read as determinant of A and not modulus of A.

(ii) Only square matrices have determinants.

DETERMINANT OF MATRIX OF ORDER 1 & 2

ORDER 1

- A = [a], det A = a
- Let A = [4], A Is a Square Matrix of order 1 x 1 (order 1). Then det A = 4 OR We can write |A| = 4 OR $\Delta = 4$
- Let A = [-4], A Is a Square Matrix of order 1 x 1 (order 1). Here also, det A = 4 OR We can write |A| = 4 OR $\Delta = 4$

A =

 $|A| = a_{11}a_{22} - a_{12}a_{21}$

ORDER 2

•
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 $|A| = ad - bc$
• $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ $|A| = a_{11}a_{22} - a_{12}a_{21}$

Eg: Evaluate a determinant order 2

Eg: If
$$A = \begin{bmatrix} 4 & 5 \\ 3 & -1 \end{bmatrix}$$
, find $|A|$. $|A| = 4 \times (-1) - 5 \times 3 = -19$
If $P = \begin{bmatrix} c & d \\ -5 & 2 \end{bmatrix}$, find $|P| \cdot |P| = 2c - (-5d) = 2c + 5d$
 $\Delta = \begin{vmatrix} 1 & 2 \\ 4 & 2 \end{vmatrix}$ Evaluate
 $= 1 \times 2 - 4 \times 2 = 2 - 8 = -6$

DETERMINANT OF A MATRIX OF ORDER 3 X 3

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

EXPANSION ALONG ROW 1 (R₁)

$$\begin{bmatrix} \tilde{a}_{11} & \tilde{a}_{12} & \tilde{a}_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$|A| = (-1)^{1+1}a_{11} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + (-1)^{1+2}a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + (-1)^{1+3}a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

EXPANSION ALONG COLUMN 2 (C₂)

$$|A| = (-1)^{1+2}a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + (-1)^{2+2}a_{22} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + (-1)^{3+2}a_{32} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$$

S M

DETERMINANT OF A MATRIX OF ORDER 3 X 3

EXPANSION ALONG ROW 1 (R_1)

$$\begin{aligned} |\mathbf{A}| &= \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ &= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \\ &= a_{11} (a_{22}a_{33} - a_{23}a_{32}) - a_{12} (a_{21}a_{33} - a_{23}a_{31}) + a_{13} (a_{21}a_{32} - a_{22}a_{31}) \end{aligned}$$

working

Eg: If
$$A = \begin{pmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{pmatrix}$$
 Expand along R_1
= $(-1)^{1+1}x^3(1+6)+(-1)^{1+2}x -4(1+4)+(-1)^{1+3}x^5(3-2)$
= $+21 - (-20) + 5 = 46$
Expand along C_2
= $(-1)^{1+2}x(-4)(1+4)+(-1)^{2+2}x 1(3-10)+(-1)^{3+2} \times 3(-6-5)$

= - (-20) + (-7) - (-33) = 46

REMARK (1)

While Expanding , instead of multiplying by $(-1)^{i+j}$, we can multiply by (+1) or (-1) according as (1+j) is even or odd. + - + -• Evaluate $\Delta = \begin{vmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{vmatrix}$ Expand along C_1 $\Delta = +1 (-9+12) - 2 (-9+8) + 5 (-3+2)$ = 3 + 2 - 5 = 0

Remark (2)

For easier calculations, we shall expand the determinant along that row or column which contains maximum number of zeros.

Eg: Evaluate
$$\Delta = \begin{vmatrix} 1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0 \end{vmatrix}$$

Note that in the third column, two entries are zero. So expanding along third column (C_3)

$$\Delta = +4\begin{vmatrix} -1 & 3 \\ 4 & 1 \end{vmatrix} - 0\begin{vmatrix} 1 & 2 \\ 4 & 1 \end{vmatrix} + 0\begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix}$$
$$= 4(-1-12) + 0 + 0$$
$$= -52$$

Remark (3)

 $|k A| = k^n |A|$ [n is the order of the matrix] Eg: A = $\begin{pmatrix} 1 & 2 \\ 4 & 2 \end{pmatrix}$ $|2A| = 2^2 |A| = 4 \times (2 - 8) = -24$ $|3A| = 3^2 |A| = 9 \times (2 - 8) = -54$ Eg: A = $\begin{pmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{pmatrix}$ |A| = 46 $|2A| = 2^{3}|A| = 8 \times 46 = 368$ $|3A| = 3^3 |A| = 27 \times 46 = 1242$

Equality of Determinants

Eg :
$$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$$
 then find the value of x.
 $x^2 - 36 = 36 - 36$
 $x^2 = 36$
 $x = \pm 6$
HOME WORK
EX : 4.1 - Q 1, 2, 5, 7

DETERMINANTS-PART 2 TESSY ROY VARGHESE

INDIAN SCHOOL MUSCAT

PROPERTIES OF DETERMINANTS

1. $|A^T| = |A|$

Eg: A =
$$\begin{pmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{pmatrix}$$
 $A^{T} = \begin{pmatrix} 3 & 1 & 2 \\ -4 & 1 & 3 \\ 5 & -2 & 1 \end{pmatrix}$
 $|A| = + 21 - (-20) + 5 = 46$ $|A^{T}| = 46$

s M

2

- If we interchange any two rows (or columns), then sign of the determinant changes
- (if we change twice , then the value remains same)

Eg: A =
$$\begin{pmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{pmatrix}$$

|A|= + 21 - (-20) + 5
= 46
B = $\begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & -2 \\ 3 & -4 & 5 \end{pmatrix}$
|B| = 2(5-8) -3(5+6)+1(-4-3)
= - 46

If any two rows or any two columns in a determinant are identical (or proportional), then the value of the determinant is zero.

$A = \begin{vmatrix} 1 & 4 & 0 \\ 2 & 0 & 5 \\ 1 & 4 & 0 \end{vmatrix}$	$A = \begin{vmatrix} 1 & 2 & 0 \\ 2 & 4 & 5 \\ 1 & 2 & 8 \end{vmatrix}$		
= 1(0-20)-4(0-5) +0	= 1(32-10) -2 (16-5) +0		
= 0	= 0		

If we multiply each element of a row (or a column) of a determinant by constant k, then value of the determinant is multiplied by k.

(Multiplying a determinant by k means multiplying the elements of only one

If elements of a row (or a column) in a determinant can be expressed as the sum of two or more elements, then the given determinant can be expressed as the sum of two or more determinants.

$$\begin{vmatrix} a_1 + a_2 & b & c \\ p_1 + p_2 & q & r \\ u_1 + u_2 & v & \mathbf{W} \end{vmatrix} = \begin{vmatrix} a_1 & b & c \\ p_1 & q & r \\ u_1 & v & \mathbf{W} \end{vmatrix} + \begin{vmatrix} a_2 & b & c \\ p_2 & q & r \\ u_2 & v & \mathbf{W} \end{vmatrix}$$

▶ If to each element of a row (or a column) of a determinant the equimultiples of corresponding elements of other rows (columns) are added, then value of determinant remains same. $R_i \rightarrow R_i + kR_j$ or $C_i \rightarrow C_i + kC_j$

REMARKS:

1.If all the elements of a row (or column) are zeros, then the value of the determinant is zero
Eg: $\begin{vmatrix} 1 & 0 & 3 \\ 5 & 0 & 5 \\ 8 & 0 & 4 \end{vmatrix} = 0$

2.If all the elements of a determinant above or below the main diagonal consists of zeros, then the value of the determinant is equal to the product of diagonal elements. Eg: $\begin{bmatrix} 5 & 0 & 0 \\ 5 & 9 & 0 \\ 8 & 7 & 2 \end{bmatrix} = 90$

NOTES:

- A is a singular matrix, |A| = 0
- $\bullet ||AB|| = |A|||B||$
- $|k A| = k^n |A|$ (n is the order of the matrix)
- $|A^n| = |A|^n$
- If A is a non-singular matrix, then $|A^{-1}| = 1 / |A| = |A|^{-1}$
- In general, $|B + C| \neq |B| + |C|$

PROBLEMS

Q3.

Prove that $\begin{vmatrix} a & a+b & a+b+c \\ 2a & 3a+2b & 4a+3b+2c \\ 3a & 6a+3b & 10a+6b+3c \end{vmatrix} = a^3.$ Q3. Solution Applying operations $R_2 \rightarrow R_2 - 2R_1$ and $R_3 \rightarrow R_3 - 3R_1$ to the given determinant Δ , we have $\Delta = \begin{bmatrix} a & a+b & a+b+c \\ 0 & a & 2a+b \\ 0 & 3a & 7a+3b \end{bmatrix}$ Now applying $R_3 \rightarrow R_3 - 3R_2$, we get $\Delta = \begin{bmatrix} a & a+b & a+b+c \\ 0 & a & 2a+b \\ 0 & 0 & a \end{bmatrix}$ Expanding along C_1 , we obtain $\Delta = a \begin{vmatrix} a & 2a+b \\ 0 & a \end{vmatrix} + 0 + 0$ $= a (a^2 - 0) = a (a^2) = a^3$

Q4. Without expanding, prove that $\Delta = \begin{vmatrix} x + y & y + z & z + x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} = 0$ Solution Applying $R_1 \rightarrow R_1 + R_2$ to Δ , we get $\Delta = \begin{vmatrix} x + y + z & x + y + z & x + y + z \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix}$ Since the elements of R_1 and R_3 are proportional, $\Delta = 0$.

Q5.

•) Evaluate Q5. $\Delta = \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}$ Solution Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we get $\Delta = \begin{bmatrix} 1 & a & bc \\ 0 & b - a & c & (a - b) \\ 0 & c - a & b & (a - c) \end{bmatrix}$ Taking factors (b - a) and (c - a) common from R₂ and R₃, respectively, we get $\Delta = (b-a) (c-a) \begin{vmatrix} 1 & a & bc \\ 0 & 1 & -c \\ 0 & 1 & -b \end{vmatrix}$ = (b - a) (c - a) [(-b + c)] (Expanding along first column) = (a-b) (b-c) (c-a)

HOME WORK

Using the property of determinants and without expanding in Exercises 1 to 7, prove that: $|a-b \ b-c \ c-a|$ x a x+a2. $\begin{vmatrix} b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix} = 0$ Ь |y+b|=0z+cC 4. $\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix} = 0$ 7 65 8 75 = 0 3. 3 5 86 9 5. $\begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix} = 2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix}$

EX. 4.2 Q 1,2,3,4,5

DETERMINANTS (PART3)

Q.6

Question 7: By using properties of determinants, show that: $\begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} = 4a^2b^2c^2$		A	
Solution 7: $\Delta = \begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix}$		J	
$= abc \begin{vmatrix} a & -b & c \\ a & b & -c \end{vmatrix}$ $\begin{vmatrix} -1 & 1 & 1 \end{vmatrix}$ [T	Taking out factors a, b, c from R_1, R_2 and R_3]		
$= = a^{2}b^{2}c^{2} \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} $ $\begin{bmatrix} T_{1} \\ P_{2} \\ P_{3} \\$	aking out factors a, b, c from C_1, C_2 and C_3]		
$\Delta = a^2 b^2 c^2 \begin{vmatrix} -1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{vmatrix}$	$= a^{2}b^{2}c^{2}(-1)\begin{vmatrix} 0 & 2 \\ 2 & 0 \end{vmatrix}$ $= -a^{2}b^{2}c^{2}(0-4) = 4a^{2}b^{2}c^{2}$		

Q.7

(ii) Let $\Delta = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}$ Applying $C_1 \to C_1 - C_2$ and $C_2 \to C_2 - C_3$, we have: $\Delta = \begin{vmatrix} 0 & 0 & 1 \\ a - c & b - c & c \\ a^3 - c^3 & b^2 - c^3 & c^3 \end{vmatrix}$ $= \begin{vmatrix} 0 & 0 & 1 \\ a - c & b - c & c \\ (a - c)(a^2 + ac + c^2) & (b - c)(b^2 + bc + c^2) & c^3 \end{vmatrix}$ $= (c - a)(b - c) \begin{vmatrix} 0 & 0 & 1 \\ -1 & 1 & c \\ -(a^2 + ac + c^2) & (b^2 + bc + c^3) & c^3 \end{vmatrix}$ Applying $C_1 \to C_1 + C_2$, we have:

$$\Delta = (c-a)(b-c) \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & c \\ (b^2 - a^2) + (bc - ac) & (b^2 + bc + c^2) & c^2 \end{vmatrix}$$
$$= (b-c)(c-a)(a-b) \begin{vmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ -(a+b+c) & (b^2 + bc + c^2) & c^2 \end{vmatrix}$$
$$= (a-b)(b-c)(c-a)(a+b+c) \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & c \\ -1 & (b^2 + bc + c^2) & c^2 \end{vmatrix}$$

Expanding along C_1 , we have:

[=(a-b)(b-c)(c-a)(a+b+c)

 $\Delta = (a-b)(b-c)(c-a)(a+b+c)(-1)\begin{vmatrix} 0 & 1 \\ 1 & c \end{vmatrix}$ = (a-b)(b-c)(c-a)(a+b+c)Hence, the given result is proved. Q8

l S M Q.9

Question 11:

By using properties of determinants, show that: (i) $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^{3}$ (ii) $\begin{vmatrix} x+y+2z & x & y \\ z & y+z+2x & y \\ z & x & z+x+2y \end{vmatrix} = 2(x+y+z)^{3}$

Solution 11:

(i) $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ \end{vmatrix} = (a+b+c)^{5}$ 2c 2c c-a-b Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we have: |a+b+c| a+b+c| a+b+c $\Delta = 2b \quad b-c-a$ 2b $2c \quad c-a-b$ 2c1 1 $=(a+b+c)|2b \quad b-c-a \qquad 2b$ $2c \quad c-a-b$ 2cApplying $C_2 \rightarrow C_2 - C_1$, $C_3 \rightarrow C_3 - C_1$, we have: 0 0 $\Delta = (a+b+c) 2b - (a+b+c)$ 0 -(a+b+c)0

Expanding along C_3 , we have: $\Delta = (a+b+c)^3 (-1)(-1) = (a+b+c)^3$

Q.10

(ii)
$$\Delta = \begin{vmatrix} x + y + 2z & x & y \\ z & y + z + 2x & y \\ z & x & z + x + 2y \end{vmatrix}$$

Applying $C_1 \to C_1 + C_2 + C_3$, we have:

$$\Delta = \begin{vmatrix} 2(x + y + z) & x & y \\ 2(x + y + z) & y + z + 2x & y \\ 2(x + y + z) & x & z + x + 2y \end{vmatrix}$$

$$= 2(x + y + z) \begin{vmatrix} 1 & x & y \\ 1 & y + z + 2x & y \\ 1 & x & z + x + 2y \end{vmatrix}$$

Applying $R_2 \to R_2 - R_1$ and $R_2 \to R_3 - R_1$, we have:

$$\Delta = 2(x + y + z) \begin{vmatrix} 1 & x & y \\ 0 & x + y + z & 0 \\ 0 & 0 & x + y + z \end{vmatrix}$$

$$= 2(x + y + z) \begin{vmatrix} 1 & x & y \\ 0 & x + y + z & 0 \\ 0 & 0 & x + y + z \end{vmatrix}$$

$$= 2(x + y + z) \begin{vmatrix} 1 & x & y \\ 0 & x + y + z & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Expanding along R_3 , we have:

$$\Delta = 2(x + y + z)^2 (1)(1 - 0) = 2(x + y + z)^3$$

Hence, the given result is proved.

Q11

Q12)
$$\begin{bmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{bmatrix} = (1 - x^3)^2$$
, $x \neq 0$
Solution: C1 \rightarrow C1 - x.C3

$$\begin{bmatrix} 1 - x^3 & x & x^2 \\ 0 & 1 & x \\ 0 & x^2 & 1 \end{bmatrix}$$

Expand along C1
= $(1 - x^3) (1 - x^3)$
= $(1 - x^3)^2$

Q12.

We need to prove the following identity:

$$\begin{vmatrix} a^{2}+1 & ab & ac \\ ab & b^{2}+1 & bc \\ ca & cb & c^{2}+1 \end{vmatrix} = 1 + a^{2} + b^{2} + c^{2}$$
Let us consider the L.H.S of the above equation.

$$\Delta = \begin{vmatrix} a^{2}+1 & ab & ac \\ ab & b^{2}+1 & bc \\ ca & cb & c^{2}+1 \end{vmatrix}$$
Applying $R_{1} \rightarrow R_{1}(a), R_{2} \rightarrow R_{2}(b)$ and $R_{3} \rightarrow R_{3}(c)$, we get

$$\Delta = \frac{1}{abc} \begin{vmatrix} a(a^{2}+1) & a^{2}b & a^{2}c \\ ab^{2} & b(b^{2}+1) & b^{2}c \\ c^{2}a & c^{2}b & c(c^{2}+1) \end{vmatrix}$$
Taking a,b, and c common from C_{1}, C_{2} and C_{3} , respectively, we get,

$$\Delta = \frac{abc}{abc} \begin{vmatrix} a^{2}+1 & a^{2} & a^{2} \\ b^{2} & (b^{2}+1) & b^{2} \\ c^{2} & c^{2} & (c^{2}+1) \end{vmatrix}$$
Applying $R_{1} \rightarrow R_{1} + R_{2} + R_{3}$, we get,

$$\Delta = \frac{abc}{abc} \begin{vmatrix} a^{2}+b^{2}+c^{2}+1 & a^{2}+c^{2}+1 \\ b^{2} & (b^{2}+1) & b^{2} \\ c^{2} & (b^{2}+1) & b^{2} \\ c^{2} & (b^{2}+1) & b^{2} \\ c^{2} & (c^{2}+1) & b^{2} \end{vmatrix}$$

Taking the term, $(a^2 + b^2 + c^2 + 1)$ common from the above equation, we have, $\Delta = (a^2 + b^2 + c^2 + 1) \begin{vmatrix} 1 & 1 & 1 \\ b^2 & (b^2 + 1) & b^2 \\ c^2 & c^2 & (c^2 + 1) \end{vmatrix}$ Applying $C_2 \rightarrow C_2 - C_1, C_3 \rightarrow C_3 - C_1$, we get, $\Delta = (a^2 + b^2 + c^2 + 1) \begin{vmatrix} 1 & 0 & \mathbf{0} \\ b^2 & 1 & \mathbf{0} \\ c^2 & 0 & 1 \end{vmatrix}$ $\Rightarrow \Delta = (a^2 + b^2 + c^2 + 1)$ r S M Q 13.

$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Rightarrow \Delta = \begin{vmatrix} 1 & 1 & 1 + p \\ 2 & 3 & 4 + 3p \\ 3 & 6 & 10 + 6p \end{vmatrix}$	Applying $C_2 \rightarrow C_2 - C_1$, we get $\Delta = \begin{vmatrix} 1 & 1 - 1 & 1 \\ 2 & 3 - 2 & 4 \end{vmatrix}$
Solution:	Applying $C_3 \rightarrow C_3 - pC_2$, we get	
$\Delta = \begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 4+3p+2q \\ 3 & 6+3p & 10+6p+3q \end{vmatrix}$	$\Delta = \begin{vmatrix} 1 & 1 & 1 + p - p(1) \\ 2 & 3 & 4 + 3p - p(3) \\ 3 & 6 & 10 + 6p - p(6) \end{vmatrix}$	$\Rightarrow \Delta = \begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 4 \\ 3 & 3 & 10 \end{vmatrix}$
We know that the value of a determinant remains same if we apply the operation $R_i \rightarrow R_i + kR_j$ or $C_i \rightarrow C_i + kC_j$.	$\Delta = \begin{bmatrix} 1 & 1 & 1 + p + q - q(1) \\ 2 & 3 & 4 + 3p + 2q - q(2) \\ 2 & (-10 + (p + 2q - q(2)) \end{bmatrix}$	$\Delta = \begin{vmatrix} 1 & 0 & 1 - 1 \\ 2 & 1 & 4 - 2 \\ 2 & 0 & 10 & 2 \end{vmatrix}$
Applying $C_2 \rightarrow C_2 - pC_1$, we get	$ 3 \ 6 \ 10 + 6p + 3q - q(3) $	13 3 10 - 31
$\Delta = \begin{vmatrix} 1 & 1+p-p(1) & 1+p+q \\ 2 & 3+2p-p(2) & 4+3p+2q \\ 3 & 6+3p-p(3) & 10+6p+3q \end{vmatrix}$	$\Rightarrow \Delta = \begin{vmatrix} 1 & 1 & 1 + p \\ 2 & 3 & 4 + 3p \\ 3 & 6 & 10 + 6p \end{vmatrix}$	$\Rightarrow \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 6 & 10 \end{vmatrix}$
$\Rightarrow \Delta = \begin{vmatrix} 1 & 1 & 1 + p + q \\ 2 & 3 & 4 + 3p + 2q \\ 3 & 6 & 10 + 6p + 3q \end{vmatrix}$	Applying $C_3 \rightarrow C_3 - pC_2$, we get $\begin{vmatrix} 1 & 1 & 1 + p - p(1) \end{vmatrix}$	$\Rightarrow \Delta = \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 3 & 3 & 7 \end{vmatrix}$
Applying $C_3 \rightarrow C_3 - qC_1$, we get	$\Delta = \begin{bmatrix} 2 & 3 & 4 + 3p - p(3) \\ 3 & 6 & 10 + 6p - p(6) \end{bmatrix}$	Expanding the determinant along R_1 , we have $\Delta = 1[(1)(7) - (3)(2)] - 0 + 0$
$\Delta = \begin{vmatrix} 1 & 1 & 1 + p + q - q(1) \\ 2 & 3 & 4 + 3p + 2q - q(2) \\ 3 & 6 & 10 + 6p + 3q - q(3) \end{vmatrix}$	$\Rightarrow \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 6 & 10 \end{vmatrix}$	$\therefore \Delta = 7 - 6 = 1$

S N/

 $\begin{vmatrix} a & -b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = ((1+a^2+b^2)^3)$ $C1 \rightarrow C1 - bC3$; $C2 \rightarrow C2 + aC3$ $\begin{vmatrix} 1+a^2+b^2 & 2ab & -2b \\ 0 & 1-a^2+b^2 & 2a \\ b+ba^2+b^3 & -2a & 1-a^2-b^2 \end{vmatrix}$ $1 + a^{2} + b^{2} \begin{vmatrix} 1 & 2ab & -2b \\ 0 & 1 - a^{2} + b^{2} & 2a \\ b & -2a & 1 - a^{2} - b^{2} \end{vmatrix}$

 $R3 \rightarrow R3 - bR1 + aR2$ $+b^{2}\begin{vmatrix}1&2ab&-2b\\0&1-a^{2}+b^{2}&2a\\0&-a(1+a^{2}+b^{2})&1+a^{2}+b^{2}\end{vmatrix}$ $1 + a^2$ $((1+a^2+b^2)^2 \begin{vmatrix} 1 & 2ab & -2b \\ 0 & 1-a^2+b^2 & 2a \\ 0 & -a & 1+a^2+b^2 \end{vmatrix}$ **EXPAND ALONG C1** $((1+a^2+b^2)^3)$

HOME WORK

EX.4.2

Q 7,9,10, 11(ii)

S